Cargando…
Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways
The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783437/ https://www.ncbi.nlm.nih.gov/pubmed/24086255 http://dx.doi.org/10.1371/journal.pone.0072116 |
_version_ | 1782285664973225984 |
---|---|
author | Brink-Jensen, Kasper Bak, Søren Jørgensen, Kirsten Ekstrøm, Claus Thorn |
author_facet | Brink-Jensen, Kasper Bak, Søren Jørgensen, Kirsten Ekstrøm, Claus Thorn |
author_sort | Brink-Jensen, Kasper |
collection | PubMed |
description | The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used in several recent studies. However if such information is not available for a particular organism these methods fall short. In this paper we propose a statistical method that is applicable to a dataset consisting of Liquid Chromatography-Mass Spectroscopy (LC-MS) and gene expression (DNA microarray) measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the analysis. Our proposed approach starts by identifying the basis functions (“building blocks”) that constitute the output from a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the metabolite data. The modeling framework is extremely flexible as well as computationally fast and can accommodate treatment effects and other variables related to the experimental design. We demonstrate that within the proposed framework, genes regulating the production of specific metabolites can be identified correctly unless the variation in the noise is more than twice that of the signal. |
format | Online Article Text |
id | pubmed-3783437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37834372013-10-01 Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways Brink-Jensen, Kasper Bak, Søren Jørgensen, Kirsten Ekstrøm, Claus Thorn PLoS One Research Article The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used in several recent studies. However if such information is not available for a particular organism these methods fall short. In this paper we propose a statistical method that is applicable to a dataset consisting of Liquid Chromatography-Mass Spectroscopy (LC-MS) and gene expression (DNA microarray) measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the analysis. Our proposed approach starts by identifying the basis functions (“building blocks”) that constitute the output from a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the metabolite data. The modeling framework is extremely flexible as well as computationally fast and can accommodate treatment effects and other variables related to the experimental design. We demonstrate that within the proposed framework, genes regulating the production of specific metabolites can be identified correctly unless the variation in the noise is more than twice that of the signal. Public Library of Science 2013-09-25 /pmc/articles/PMC3783437/ /pubmed/24086255 http://dx.doi.org/10.1371/journal.pone.0072116 Text en © 2013 Brink-Jensen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Brink-Jensen, Kasper Bak, Søren Jørgensen, Kirsten Ekstrøm, Claus Thorn Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title | Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title_full | Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title_fullStr | Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title_full_unstemmed | Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title_short | Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways |
title_sort | integrative analysis of metabolomics and transcriptomics data: a unified model framework to identify underlying system pathways |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783437/ https://www.ncbi.nlm.nih.gov/pubmed/24086255 http://dx.doi.org/10.1371/journal.pone.0072116 |
work_keys_str_mv | AT brinkjensenkasper integrativeanalysisofmetabolomicsandtranscriptomicsdataaunifiedmodelframeworktoidentifyunderlyingsystempathways AT baksøren integrativeanalysisofmetabolomicsandtranscriptomicsdataaunifiedmodelframeworktoidentifyunderlyingsystempathways AT jørgensenkirsten integrativeanalysisofmetabolomicsandtranscriptomicsdataaunifiedmodelframeworktoidentifyunderlyingsystempathways AT ekstrømclausthorn integrativeanalysisofmetabolomicsandtranscriptomicsdataaunifiedmodelframeworktoidentifyunderlyingsystempathways |