Cargando…

Phenotypic heterogeneity in skeletal muscle sodium channelopathies: A case report and literature review

Skeletal muscle sodium channelopathies (SMSCs) including hyperkalemic periodic paralysis (HyperPP), paramyotonia congenita (PC), and sodium channel myotonia are caused by sodium channel gene (SCN4A) mutations, with altered sarcolemal excitability, and can present as episodes of skeletal muscle weakn...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleem, Rashid, Setty, Gururaj, Khan, Arif, Farrell, Duncan, Hussain, Nahin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783724/
https://www.ncbi.nlm.nih.gov/pubmed/24082935
http://dx.doi.org/10.4103/1817-1745.117848
Descripción
Sumario:Skeletal muscle sodium channelopathies (SMSCs) including hyperkalemic periodic paralysis (HyperPP), paramyotonia congenita (PC), and sodium channel myotonia are caused by sodium channel gene (SCN4A) mutations, with altered sarcolemal excitability, and can present as episodes of skeletal muscle weakness, paralysis, and myotonia. We report a teenage boy, who presented with features of HyperPP, PC, myotonia congenita, and sodium channel myotonia. His electromyography (EMG) revealed myopathic changes, myotonia, and Fournier EMG pattern I, and posed a diagnostic challenge. Genetic analysis showed Thr704Met mutation in SCN4A gene. While with typical clinical phenotypes, the electromyographic patterns can be used to direct genetic testing, atypical phenotypes may pose diagnostic dilemmas. Clinicians dealing with neuromuscular disorders in children need to be aware of the unusual clinical presentations of SMSC, so that focused genetic testing can be carried out.