Cargando…

Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes

During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resis...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lipu, Fobert, Pierre R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785447/
https://www.ncbi.nlm.nih.gov/pubmed/24086773
http://dx.doi.org/10.1371/journal.pone.0077378
_version_ 1782477660697395200
author Wang, Lipu
Fobert, Pierre R.
author_facet Wang, Lipu
Fobert, Pierre R.
author_sort Wang, Lipu
collection PubMed
description During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways.
format Online
Article
Text
id pubmed-3785447
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37854472013-10-01 Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes Wang, Lipu Fobert, Pierre R. PLoS One Research Article During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways. Public Library of Science 2013-09-27 /pmc/articles/PMC3785447/ /pubmed/24086773 http://dx.doi.org/10.1371/journal.pone.0077378 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Wang, Lipu
Fobert, Pierre R.
Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title_full Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title_fullStr Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title_full_unstemmed Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title_short Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes
title_sort arabidopsis clade i tga factors regulate apoplastic defences against the bacterial pathogen pseudomonas syringae through endoplasmic reticulum-based processes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785447/
https://www.ncbi.nlm.nih.gov/pubmed/24086773
http://dx.doi.org/10.1371/journal.pone.0077378
work_keys_str_mv AT wanglipu arabidopsiscladeitgafactorsregulateapoplasticdefencesagainstthebacterialpathogenpseudomonassyringaethroughendoplasmicreticulumbasedprocesses
AT fobertpierrer arabidopsiscladeitgafactorsregulateapoplasticdefencesagainstthebacterialpathogenpseudomonassyringaethroughendoplasmicreticulumbasedprocesses