Cargando…

Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis

Microarray profiling was used to investigate gene expression in the hypoxic seizure model of acquired epilepsy in the rat, with the aim of characterizing functional pathways which are persistently activated or repressed during epileptogenesis. Hippocampal and cortical tissues were transcriptionally...

Descripción completa

Detalles Bibliográficos
Autores principales: Theilhaber, Joachim, Rakhade, Sanjay N., Sudhalter, Judy, Kothari, Nayantara, Klein, Peter, Pollard, Jack, Jensen, Frances E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785482/
https://www.ncbi.nlm.nih.gov/pubmed/24086344
http://dx.doi.org/10.1371/journal.pone.0074428
_version_ 1782477668752556032
author Theilhaber, Joachim
Rakhade, Sanjay N.
Sudhalter, Judy
Kothari, Nayantara
Klein, Peter
Pollard, Jack
Jensen, Frances E.
author_facet Theilhaber, Joachim
Rakhade, Sanjay N.
Sudhalter, Judy
Kothari, Nayantara
Klein, Peter
Pollard, Jack
Jensen, Frances E.
author_sort Theilhaber, Joachim
collection PubMed
description Microarray profiling was used to investigate gene expression in the hypoxic seizure model of acquired epilepsy in the rat, with the aim of characterizing functional pathways which are persistently activated or repressed during epileptogenesis. Hippocampal and cortical tissues were transcriptionally profiled over a one week period following an initial series of seizures induced by mild hypoxia at post-natal day 10 (P10), and the gene expression data was then analyzed with a focus on gene set enrichment analysis, an approach which emphasizes regulation of entire pathways rather than of individual genes. Animals were subjected to one of three conditions: a control with no hypoxia, hypoxic seizures, and hypoxic seizures followed by treatment with the AMPAR antagonist NBQX, a compound currently proposed to be a modulator of epileptogenesis. While temporal gene expression in the control samples was found to be consistent with known processes of neuronal maturation in the rat for the given time window, the hypoxic seizure response was found to be enriched for components of the PI3K/mTOR and Wnt signaling pathways, alongside gene sets representative of glutamatergic, synaptic and axonal processes, perhaps regulated as a downstream consequence of activation of these pathways. Wnt signaling components were also found enriched in the more specifically epileptogenic NBQX-responsive gene set. While activation of the mTOR pathway is consistent with its known role in epileptogenesis and strengthens the case for mTOR or PI3K pathway inhibitors as potential anti-epileptogenic drugs, investigation of the role of Wnt signaling and the effect of appropriate inhibitors might offer a parallel avenue of research toward anti-epileptogenic treatment of epilepsy.
format Online
Article
Text
id pubmed-3785482
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37854822013-10-01 Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis Theilhaber, Joachim Rakhade, Sanjay N. Sudhalter, Judy Kothari, Nayantara Klein, Peter Pollard, Jack Jensen, Frances E. PLoS One Research Article Microarray profiling was used to investigate gene expression in the hypoxic seizure model of acquired epilepsy in the rat, with the aim of characterizing functional pathways which are persistently activated or repressed during epileptogenesis. Hippocampal and cortical tissues were transcriptionally profiled over a one week period following an initial series of seizures induced by mild hypoxia at post-natal day 10 (P10), and the gene expression data was then analyzed with a focus on gene set enrichment analysis, an approach which emphasizes regulation of entire pathways rather than of individual genes. Animals were subjected to one of three conditions: a control with no hypoxia, hypoxic seizures, and hypoxic seizures followed by treatment with the AMPAR antagonist NBQX, a compound currently proposed to be a modulator of epileptogenesis. While temporal gene expression in the control samples was found to be consistent with known processes of neuronal maturation in the rat for the given time window, the hypoxic seizure response was found to be enriched for components of the PI3K/mTOR and Wnt signaling pathways, alongside gene sets representative of glutamatergic, synaptic and axonal processes, perhaps regulated as a downstream consequence of activation of these pathways. Wnt signaling components were also found enriched in the more specifically epileptogenic NBQX-responsive gene set. While activation of the mTOR pathway is consistent with its known role in epileptogenesis and strengthens the case for mTOR or PI3K pathway inhibitors as potential anti-epileptogenic drugs, investigation of the role of Wnt signaling and the effect of appropriate inhibitors might offer a parallel avenue of research toward anti-epileptogenic treatment of epilepsy. Public Library of Science 2013-09-27 /pmc/articles/PMC3785482/ /pubmed/24086344 http://dx.doi.org/10.1371/journal.pone.0074428 Text en © 2013 Theilhaber et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Theilhaber, Joachim
Rakhade, Sanjay N.
Sudhalter, Judy
Kothari, Nayantara
Klein, Peter
Pollard, Jack
Jensen, Frances E.
Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title_full Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title_fullStr Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title_full_unstemmed Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title_short Gene Expression Profiling of a Hypoxic Seizure Model of Epilepsy Suggests a Role for mTOR and Wnt Signaling in Epileptogenesis
title_sort gene expression profiling of a hypoxic seizure model of epilepsy suggests a role for mtor and wnt signaling in epileptogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785482/
https://www.ncbi.nlm.nih.gov/pubmed/24086344
http://dx.doi.org/10.1371/journal.pone.0074428
work_keys_str_mv AT theilhaberjoachim geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT rakhadesanjayn geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT sudhalterjudy geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT kotharinayantara geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT kleinpeter geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT pollardjack geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis
AT jensenfrancese geneexpressionprofilingofahypoxicseizuremodelofepilepsysuggestsaroleformtorandwntsignalinginepileptogenesis