Cargando…
Bayesian Parameter Inference by Markov Chain Monte Carlo with Hybrid Fitness Measures: Theory and Test in Apoptosis Signal Transduction Network
When exact values of model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Biologic...
Autores principales: | Murakami, Yohei, Takada, Shoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785499/ https://www.ncbi.nlm.nih.gov/pubmed/24086320 http://dx.doi.org/10.1371/journal.pone.0074178 |
Ejemplares similares
-
Correction: Bayesian Parameter Inference by Markov Chain Monte Carlo with Hybrid Fitness Measures: Theory and Test in Apoptosis Signal Transduction Network
Publicado: (2014) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
por: Fazel, Mohamadreza, et al.
Publicado: (2019) -
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
por: Rabier, Charles-Elie, et al.
Publicado: (2021) -
Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
por: Howison, Mark, et al.
Publicado: (2014)