Cargando…
Accelerating materials property predictions using machine learning
The materials discovery process can be significantly expedited and simplified if we can learn effectively from available knowledge and data. In the present contribution, we show that efficient and accurate prediction of a diverse set of properties of material systems is possible by employing machine...
Autores principales: | Pilania, Ghanshyam, Wang, Chenchen, Jiang, Xun, Rajasekaran, Sanguthevar, Ramprasad, Ramamurthy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786293/ https://www.ncbi.nlm.nih.gov/pubmed/24077117 http://dx.doi.org/10.1038/srep02810 |
Ejemplares similares
-
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2016) -
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016) -
A robust and stable gene selection algorithm based on graph theory and machine learning
por: Saha, Subrata, et al.
Publicado: (2021) -
Machine learning bandgaps of double perovskites
por: Pilania, G., et al.
Publicado: (2016) -
Recent advances in computational materials design: methods, applications, algorithms, and informatics
por: Pilania, Ghanshyam, et al.
Publicado: (2022)