Cargando…
The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786905/ https://www.ncbi.nlm.nih.gov/pubmed/24098767 http://dx.doi.org/10.1371/journal.pone.0076090 |
_version_ | 1782477795410051072 |
---|---|
author | Liao, Yang-Wen-Ke Sun, Zeng-Hui Zhou, Yan-Hong Shi, Kai Li, Xin Zhang, Guan-Qun Xia, Xiao-Jian Chen, Zhi-Xiang Yu, Jing-Quan |
author_facet | Liao, Yang-Wen-Ke Sun, Zeng-Hui Zhou, Yan-Hong Shi, Kai Li, Xin Zhang, Guan-Qun Xia, Xiao-Jian Chen, Zhi-Xiang Yu, Jing-Quan |
author_sort | Liao, Yang-Wen-Ke |
collection | PubMed |
description | Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in RDR1 induction in the compatible interactions between Tobacco mosaic tobamovirus (TMV) and Nicotiana tabacum, Nicotiana benthamiana, and Arabidopsis thaliana was examined. TMV inoculation onto the lower leaves of N. tabacum induced the rapid accumulation of H(2)O(2) and NO followed by the increased accumulation of RDR1 transcripts in the non-inoculated upper leaves. Pretreatment with exogenous H(2)O(2) and NO on upper leaf led to increased RDR1 expression and systemic TMV resistance. Conversely, dimethylthiourea (an H(2)O(2) scavenger) and 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (an NO scavenger) partly blocked TMV- and SA-induced RDR1 expression and increased TMV susceptibility, whereas pretreatment with exogenous H(2)O(2) and NO failed to diminish TMV infection in N. benthamiana plants with naturally occurring RDR1 loss-of-function. Furthermore, in N. tabacum and A. thaliana, TMV-induced H(2)O(2) accumulation was NO-dependent, whereas NO generation was not affected by H(2)O(2). These results suggest that, in response to TMV infection, H(2)O(2) acts downstream of NO to mediate induction of RDR1, which plays a critical role in strengthening RNA silencing to restrict systemic viral infection. |
format | Online Article Text |
id | pubmed-3786905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37869052013-10-04 The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus Liao, Yang-Wen-Ke Sun, Zeng-Hui Zhou, Yan-Hong Shi, Kai Li, Xin Zhang, Guan-Qun Xia, Xiao-Jian Chen, Zhi-Xiang Yu, Jing-Quan PLoS One Research Article Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in RDR1 induction in the compatible interactions between Tobacco mosaic tobamovirus (TMV) and Nicotiana tabacum, Nicotiana benthamiana, and Arabidopsis thaliana was examined. TMV inoculation onto the lower leaves of N. tabacum induced the rapid accumulation of H(2)O(2) and NO followed by the increased accumulation of RDR1 transcripts in the non-inoculated upper leaves. Pretreatment with exogenous H(2)O(2) and NO on upper leaf led to increased RDR1 expression and systemic TMV resistance. Conversely, dimethylthiourea (an H(2)O(2) scavenger) and 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (an NO scavenger) partly blocked TMV- and SA-induced RDR1 expression and increased TMV susceptibility, whereas pretreatment with exogenous H(2)O(2) and NO failed to diminish TMV infection in N. benthamiana plants with naturally occurring RDR1 loss-of-function. Furthermore, in N. tabacum and A. thaliana, TMV-induced H(2)O(2) accumulation was NO-dependent, whereas NO generation was not affected by H(2)O(2). These results suggest that, in response to TMV infection, H(2)O(2) acts downstream of NO to mediate induction of RDR1, which plays a critical role in strengthening RNA silencing to restrict systemic viral infection. Public Library of Science 2013-09-30 /pmc/articles/PMC3786905/ /pubmed/24098767 http://dx.doi.org/10.1371/journal.pone.0076090 Text en © 2013 Liao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Liao, Yang-Wen-Ke Sun, Zeng-Hui Zhou, Yan-Hong Shi, Kai Li, Xin Zhang, Guan-Qun Xia, Xiao-Jian Chen, Zhi-Xiang Yu, Jing-Quan The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus |
title | The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
|
title_full | The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
|
title_fullStr | The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
|
title_full_unstemmed | The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
|
title_short | The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus
|
title_sort | role of hydrogen peroxide and nitric oxide in the induction of plant-encoded rna-dependent rna polymerase 1 in the basal defense against tobacco mosaic virus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786905/ https://www.ncbi.nlm.nih.gov/pubmed/24098767 http://dx.doi.org/10.1371/journal.pone.0076090 |
work_keys_str_mv | AT liaoyangwenke theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT sunzenghui theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT zhouyanhong theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT shikai theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT lixin theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT zhangguanqun theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT xiaxiaojian theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT chenzhixiang theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT yujingquan theroleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT liaoyangwenke roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT sunzenghui roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT zhouyanhong roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT shikai roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT lixin roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT zhangguanqun roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT xiaxiaojian roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT chenzhixiang roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus AT yujingquan roleofhydrogenperoxideandnitricoxideintheinductionofplantencodedrnadependentrnapolymerase1inthebasaldefenseagainsttobaccomosaicvirus |