Cargando…
Comparison of Methods for Handling Missing Covariate Data
Missing covariate data is a common problem in nonlinear mixed effects modelling of clinical data. The aim of this study was to implement and compare methods for handling missing covariate data in nonlinear mixed effects modelling under different missing data mechanisms. Simulations generated data fo...
Autores principales: | Johansson, Åsa M., Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787222/ https://www.ncbi.nlm.nih.gov/pubmed/24022319 http://dx.doi.org/10.1208/s12248-013-9526-y |
Ejemplares similares
-
Multiple Imputation of Missing Covariates in NONMEM and Evaluation of the Method’s Sensitivity to η-Shrinkage
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
por: Bottigliengo, Daniele, et al.
Publicado: (2021) -
Comparison of covariate selection methods with correlated covariates: prior information versus data information, or a mixture of both?
por: Chasseloup, Estelle, et al.
Publicado: (2020) -
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
por: Marshall, Andrea, et al.
Publicado: (2010)