Cargando…

Pattern Recognition via PCNN and Tsallis Entropy

In this paper a novel feature extraction method for image processing via PCNN and Tsallis entropy is presented. We describe the mathematical model of the PCNN and the basic concept of Tsallis entropy in order to find a recognition method for isolated objects. Experiments show that the novel feature...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, YuDong, Wu, LeNan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787458/
https://www.ncbi.nlm.nih.gov/pubmed/27873942
http://dx.doi.org/10.3390/s8117518
Descripción
Sumario:In this paper a novel feature extraction method for image processing via PCNN and Tsallis entropy is presented. We describe the mathematical model of the PCNN and the basic concept of Tsallis entropy in order to find a recognition method for isolated objects. Experiments show that the novel feature is translation and scale independent, while rotation independence is a bit weak at diagonal angles of 45° and 135°. Parameters of the application on face recognition are acquired by bacterial chemotaxis optimization (BCO), and the highest classification rate is 72.5%, which demonstrates its acceptable performance and potential value.