Cargando…

Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity

Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reser...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Ashish, Rohlfsen, Cory, Leppo, Michelle K., Chacko, Vadappuram P., Wang, Yibin, Steenbergen, Charles, Weiss, Robert G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788056/
https://www.ncbi.nlm.nih.gov/pubmed/24098344
http://dx.doi.org/10.1371/journal.pone.0074675
_version_ 1782286262538862592
author Gupta, Ashish
Rohlfsen, Cory
Leppo, Michelle K.
Chacko, Vadappuram P.
Wang, Yibin
Steenbergen, Charles
Weiss, Robert G.
author_facet Gupta, Ashish
Rohlfsen, Cory
Leppo, Michelle K.
Chacko, Vadappuram P.
Wang, Yibin
Steenbergen, Charles
Weiss, Robert G.
author_sort Gupta, Ashish
collection PubMed
description Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo (31)P MRS and (1)H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity.
format Online
Article
Text
id pubmed-3788056
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37880562013-10-04 Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity Gupta, Ashish Rohlfsen, Cory Leppo, Michelle K. Chacko, Vadappuram P. Wang, Yibin Steenbergen, Charles Weiss, Robert G. PLoS One Research Article Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo (31)P MRS and (1)H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity. Public Library of Science 2013-10-01 /pmc/articles/PMC3788056/ /pubmed/24098344 http://dx.doi.org/10.1371/journal.pone.0074675 Text en © 2013 Gupta et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Gupta, Ashish
Rohlfsen, Cory
Leppo, Michelle K.
Chacko, Vadappuram P.
Wang, Yibin
Steenbergen, Charles
Weiss, Robert G.
Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title_full Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title_fullStr Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title_full_unstemmed Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title_short Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
title_sort creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788056/
https://www.ncbi.nlm.nih.gov/pubmed/24098344
http://dx.doi.org/10.1371/journal.pone.0074675
work_keys_str_mv AT guptaashish creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT rohlfsencory creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT leppomichellek creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT chackovadappuramp creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT wangyibin creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT steenbergencharles creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity
AT weissrobertg creatinekinaseoverexpressionimprovesmyocardialenergeticscontractiledysfunctionandsurvivalinmurinedoxorubicincardiotoxicity