Cargando…

Intrinsically Disordered and Aggregation Prone Regions Underlie β-Aggregation in S100 Proteins

S100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100 proteins have been proposed to contain disorder-prone regions. Intere...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho, Sofia B., Botelho, Hugo M., Leal, Sónia S., Cardoso, Isabel, Fritz, Günter, Gomes, Cláudio M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788126/
https://www.ncbi.nlm.nih.gov/pubmed/24098542
http://dx.doi.org/10.1371/journal.pone.0076629
Descripción
Sumario:S100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100 proteins have been proposed to contain disorder-prone regions. Interestingly, some S100 proteins also form amyloids: S100A8/A9 forms fibrils in prostatic inclusions and S100A6 fibrillates in vitro and seeds SOD1 aggregation. Here we report a study designed to investigate whether β-aggregation is a feature extensive to more members of S100 family. In silico analysis of seven human S100 proteins revealed a direct correlation between aggregation and intrinsic disorder propensity scores, suggesting a relationship between these two independent properties. Averaged position-specific analysis and structural mapping showed that disorder-prone segments are contiguous to aggregation-prone regions and that whereas disorder is prominent on the hinge and target protein-interaction regions, segments with high aggregation propensity are found in ordered regions within the dimer interface. Acidic conditions likely destabilize the seven S100 studied by decreasing the shielding of aggregation-prone regions afforded by the quaternary structure. In agreement with the in silico analysis, hydrophobic moieties become accessible as indicated by strong ANS fluorescence. ATR-FTIR spectra support a structural inter-conversion from α-helices to intermolecular β-sheets, and prompt ThT-binding takes place with no noticeable lag phase. Dot blot analysis using amyloid conformational antibodies denotes a high diversity of conformers; subsequent analysis by TEM shows fibrils as dominant species. Altogether, our data suggests that β-aggregation and disorder-propensity are related properties in S100 proteins, and that the onset of aggregation is likely triggered by loss of protective tertiary and quaternary interactions.