Cargando…

Influence of DNMT Genotype on Global and Site Specific DNA Methylation Patterns in Neonates and Pregnant Women

This study examines the relationship between common genetic variation within DNA methyltransferase genes and inter-individual variation in DNA methylation. Eleven polymorphisms spanning DNMT1 and DNMT3B were genotyped. Global and gene specific (IGF2, IGFBP3, ZNT5) DNA methylation was quantified by L...

Descripción completa

Detalles Bibliográficos
Autores principales: Potter, Catherine, McKay, Jill, Groom, Alexandra, Ford, Dianne, Coneyworth, Lisa, Mathers, John C., Relton, Caroline L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788139/
https://www.ncbi.nlm.nih.gov/pubmed/24098518
http://dx.doi.org/10.1371/journal.pone.0076506
Descripción
Sumario:This study examines the relationship between common genetic variation within DNA methyltransferase genes and inter-individual variation in DNA methylation. Eleven polymorphisms spanning DNMT1 and DNMT3B were genotyped. Global and gene specific (IGF2, IGFBP3, ZNT5) DNA methylation was quantified by LUMA and bisulfite Pyrosequencing assays, respectively, in neonatal cord blood and in maternal peripheral blood. Associations between maternal genotype and maternal methylation (n (≈) 333), neonatal genotype and neonatal methylation (n (≈) 454), and maternal genotype and neonatal methylation (n (≈) 137) were assessed. The findings of this study provide some support to the hypothesis that genetic variation in DNA methylating enzymes influence DNA methylation at global and gene-specific levels; however observations were not robust to correction for multiple testing. More comprehensive analysis of the influence of genetic variation on global and site specific DNA methylation is warranted.