Cargando…
Hybrid Method for Prediction of Metastasis in Breast Cancer Patients Using Gene Expression Signals
Using primary tumor gene expression has been shown to have the ability of finding metastasis-driving gene markers for prediction of breast cancer recurrence (BCR). However, there are some difficulties associated with analysis of microarray data, which led to poor predictive power and inconsistency o...
Autores principales: | Dehnavi, Alireza Mehri, Sehhati, Mohammad Reza, Rabbani, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788197/ https://www.ncbi.nlm.nih.gov/pubmed/24098861 |
Ejemplares similares
-
Using Protein Interaction Database and Support Vector Machines to Improve Gene Signatures for Prediction of Breast Cancer Recurrence
por: Sehhati, Mohammad Reza, et al.
Publicado: (2013) -
Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones
por: Shirazinodeh, Alireza, et al.
Publicado: (2015) -
Forming Optimal Projection Images from Intra-Retinal Layers Using Curvelet-Based Image Fusion Method
por: Jalili, Jalil, et al.
Publicado: (2020) -
Three-dimensional Segmentation of Retinal Cysts from Spectral-domain Optical Coherence Tomography Images by the Use of Three-dimensional Curvelet Based K-SVD
por: Esmaeili, Mahdad, et al.
Publicado: (2016) -
Speckle Noise Reduction in Optical Coherence Tomography Using Two-dimensional Curvelet-based Dictionary Learning
por: Esmaeili, Mahdad, et al.
Publicado: (2017)