Cargando…

A Tensile Deformation Model for In-situ Dendrite/Metallic Glass Matrix Composites

In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti(46)Zr(20)V(12)Cu(5)Be(17) exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) e...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, J. W., Zhang, T., Yang, F. Q., Liaw, P. K., Pauly, S., Xu, B. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788376/
https://www.ncbi.nlm.nih.gov/pubmed/24085187
http://dx.doi.org/10.1038/srep02816
Descripción
Sumario:In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti(46)Zr(20)V(12)Cu(5)Be(17) exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs.