Cargando…

Sonoporation by low-frequency and low-power ultrasound enhances chemotherapeutic efficacy in prostate cancer cells in vitro

Combination therapy is used to optimize anticancer efficacy and reduce the toxicity and side-effects of drugs upon systemic administration. Ultrasound (US) combined with micro-bubbles (UM) enhances the intracellular uptake of cytotoxic drugs by tumor cells, particularly drug-resistant cells. In the...

Descripción completa

Detalles Bibliográficos
Autores principales: WANG, YU, BAI, WEN-KUN, SHEN, E., HU, BING
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789114/
https://www.ncbi.nlm.nih.gov/pubmed/24137354
http://dx.doi.org/10.3892/ol.2013.1389
Descripción
Sumario:Combination therapy is used to optimize anticancer efficacy and reduce the toxicity and side-effects of drugs upon systemic administration. Ultrasound (US) combined with micro-bubbles (UM) enhances the intracellular uptake of cytotoxic drugs by tumor cells, particularly drug-resistant cells. In the present study, low-frequency and low-energy US (US irradiation conditions: frequency, 21 kHz; power density, 0.113 W/cm(2); exposure time, 2 min at a duty cycle of 70%; and valid treatment time, 84 sec) were used in combination with microbubbles (100 μl/ml) to deliver mitoxantrone HCl (MIT) to DU145 cells. The results showed that UM did not change the cell viability in the short- or long-term. However, UM statistically enhanced the therapeutic effects and up to 31.26±3.34% of the cells exposed to UM were permeabilized compared with 9.74±2.55% of cells in the control, when using calcein (MW, 622.53) as a fluorogenic marker. Notably, UM affected the migration capability of the DU145 cells at 6 h post-treatment. In conclusion, the ultrasonic parameters used in the present study enhanced the chemotherapeutic effect and reduced the unwanted side-effects of MIT.