Cargando…

Ferroelectric control of a Mott insulator

The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite hete...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Hiroyuki, Marinova, Maya, Altuntas, Philippe, Crassous, Arnaud, Bégon-Lours, Laura, Fusil, Stéphane, Jacquet, Eric, Garcia, Vincent, Bouzehouane, Karim, Gloter, Alexandre, Villegas, Javier E., Barthélémy, Agnès, Bibes, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789157/
https://www.ncbi.nlm.nih.gov/pubmed/24089020
http://dx.doi.org/10.1038/srep02834
_version_ 1782286403934093312
author Yamada, Hiroyuki
Marinova, Maya
Altuntas, Philippe
Crassous, Arnaud
Bégon-Lours, Laura
Fusil, Stéphane
Jacquet, Eric
Garcia, Vincent
Bouzehouane, Karim
Gloter, Alexandre
Villegas, Javier E.
Barthélémy, Agnès
Bibes, Manuel
author_facet Yamada, Hiroyuki
Marinova, Maya
Altuntas, Philippe
Crassous, Arnaud
Bégon-Lours, Laura
Fusil, Stéphane
Jacquet, Eric
Garcia, Vincent
Bouzehouane, Karim
Gloter, Alexandre
Villegas, Javier E.
Barthélémy, Agnès
Bibes, Manuel
author_sort Yamada, Hiroyuki
collection PubMed
description The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO(3) and the ferroelectric BiFeO(3) in its “supertetragonal” phase. Upon polarization reversal of the BiFeO(3) gate, the CaMnO(3) channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO(3) thicknesses and explain them by the electrostatic doping of the CaMnO(3) layer and the presence of a fixed dipole at the CaMnO(3)/BiFeO(3) interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices.
format Online
Article
Text
id pubmed-3789157
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37891572013-10-18 Ferroelectric control of a Mott insulator Yamada, Hiroyuki Marinova, Maya Altuntas, Philippe Crassous, Arnaud Bégon-Lours, Laura Fusil, Stéphane Jacquet, Eric Garcia, Vincent Bouzehouane, Karim Gloter, Alexandre Villegas, Javier E. Barthélémy, Agnès Bibes, Manuel Sci Rep Article The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO(3) and the ferroelectric BiFeO(3) in its “supertetragonal” phase. Upon polarization reversal of the BiFeO(3) gate, the CaMnO(3) channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO(3) thicknesses and explain them by the electrostatic doping of the CaMnO(3) layer and the presence of a fixed dipole at the CaMnO(3)/BiFeO(3) interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. Nature Publishing Group 2013-10-03 /pmc/articles/PMC3789157/ /pubmed/24089020 http://dx.doi.org/10.1038/srep02834 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Yamada, Hiroyuki
Marinova, Maya
Altuntas, Philippe
Crassous, Arnaud
Bégon-Lours, Laura
Fusil, Stéphane
Jacquet, Eric
Garcia, Vincent
Bouzehouane, Karim
Gloter, Alexandre
Villegas, Javier E.
Barthélémy, Agnès
Bibes, Manuel
Ferroelectric control of a Mott insulator
title Ferroelectric control of a Mott insulator
title_full Ferroelectric control of a Mott insulator
title_fullStr Ferroelectric control of a Mott insulator
title_full_unstemmed Ferroelectric control of a Mott insulator
title_short Ferroelectric control of a Mott insulator
title_sort ferroelectric control of a mott insulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789157/
https://www.ncbi.nlm.nih.gov/pubmed/24089020
http://dx.doi.org/10.1038/srep02834
work_keys_str_mv AT yamadahiroyuki ferroelectriccontrolofamottinsulator
AT marinovamaya ferroelectriccontrolofamottinsulator
AT altuntasphilippe ferroelectriccontrolofamottinsulator
AT crassousarnaud ferroelectriccontrolofamottinsulator
AT begonlourslaura ferroelectriccontrolofamottinsulator
AT fusilstephane ferroelectriccontrolofamottinsulator
AT jacqueteric ferroelectriccontrolofamottinsulator
AT garciavincent ferroelectriccontrolofamottinsulator
AT bouzehouanekarim ferroelectriccontrolofamottinsulator
AT gloteralexandre ferroelectriccontrolofamottinsulator
AT villegasjaviere ferroelectriccontrolofamottinsulator
AT barthelemyagnes ferroelectriccontrolofamottinsulator
AT bibesmanuel ferroelectriccontrolofamottinsulator