Cargando…
Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay
Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789258/ https://www.ncbi.nlm.nih.gov/pubmed/23907583 http://dx.doi.org/10.1038/emm.2013.63 |
_version_ | 1782286419561021440 |
---|---|
author | Kang, Mino Kim, Su Yeon An, Seong Soo A Ju, Young Ran |
author_facet | Kang, Mino Kim, Su Yeon An, Seong Soo A Ju, Young Ran |
author_sort | Kang, Mino |
collection | PubMed |
description | Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid(1–42) oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid(1–40) and (1–42), and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid(1–42) at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid(1–40) and (1–42). The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease. |
format | Online Article Text |
id | pubmed-3789258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37892582013-10-17 Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay Kang, Mino Kim, Su Yeon An, Seong Soo A Ju, Young Ran Exp Mol Med Original Article Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid(1–42) oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid(1–40) and (1–42), and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid(1–42) at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid(1–40) and (1–42). The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease. Nature Publishing Group 2013-08 2013-08-02 /pmc/articles/PMC3789258/ /pubmed/23907583 http://dx.doi.org/10.1038/emm.2013.63 Text en Copyright © 2013 KSBMB. http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Kang, Mino Kim, Su Yeon An, Seong Soo A Ju, Young Ran Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title | Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title_full | Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title_fullStr | Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title_full_unstemmed | Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title_short | Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
title_sort | characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789258/ https://www.ncbi.nlm.nih.gov/pubmed/23907583 http://dx.doi.org/10.1038/emm.2013.63 |
work_keys_str_mv | AT kangmino characterizingaffinityepitopesbetweenprionproteinandbamyloidusinganepitopemappingimmunoassay AT kimsuyeon characterizingaffinityepitopesbetweenprionproteinandbamyloidusinganepitopemappingimmunoassay AT anseongsooa characterizingaffinityepitopesbetweenprionproteinandbamyloidusinganepitopemappingimmunoassay AT juyoungran characterizingaffinityepitopesbetweenprionproteinandbamyloidusinganepitopemappingimmunoassay |