Cargando…
A Robust Algorithm for Optimisation and Customisation of Fractal Dimensions of Time Series Modified by Nonlinearly Scaling Their Time Derivatives: Mathematical Theory and Practical Applications
Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is...
Autor principal: | Fuss, Franz Konstantin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789315/ https://www.ncbi.nlm.nih.gov/pubmed/24151522 http://dx.doi.org/10.1155/2013/178476 |
Ejemplares similares
-
Workshop on Robust and Nonlinear Time-series Analysis
por: Franke, Jürgen, et al.
Publicado: (1984) -
Fractal dimension based geographical clustering of COVID-19 time series data
por: Natalia, Yessika Adelwin, et al.
Publicado: (2023) -
Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications
por: Boon, Mei Ying, et al.
Publicado: (2016) -
Four Methods to Distinguish between Fractal Dimensions in Time Series through Recurrence Quantification Analysis
por: Tomashin, Alon, et al.
Publicado: (2022) -
Modified box dimension and average weighted receiving time on the weighted fractal networks
por: Dai, Meifeng, et al.
Publicado: (2015)