Cargando…

Nearest-Neighbor Interactions and Their Influence on the Structural Aspects of Dipeptides

In this theoretical study, the role of the side chain moiety of C-terminal residue in influencing the structural and molecular properties of dipeptides is analyzed by considering a series of seven dipeptides. The C-terminal positions of the dipeptides are varied with seven different amino acid resid...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Gunajyoti, Mandal, Shilpi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789318/
https://www.ncbi.nlm.nih.gov/pubmed/24151555
http://dx.doi.org/10.1155/2013/939865
Descripción
Sumario:In this theoretical study, the role of the side chain moiety of C-terminal residue in influencing the structural and molecular properties of dipeptides is analyzed by considering a series of seven dipeptides. The C-terminal positions of the dipeptides are varied with seven different amino acid residues, namely. Val, Leu, Asp, Ser, Gln, His, and Pyl while their N-terminal positions are kept constant with Sec residues. Full geometry optimization and vibrational frequency calculations are carried out at B3LYP/6-311++G(d,p) level in gas and aqueous phase. The stereo-electronic effects of the side chain moieties of C-terminal residues are found to influence the values of Φ and Ω dihedrals, planarity of the peptide planes, and geometry around the C(7)   α-carbon atoms of the dipeptides. The gas phase intramolecular H-bond combinations of the dipeptides are similar to those in aqueous phase. The theoretical vibrational spectra of the dipeptides reflect the nature of intramolecular H-bonds existing in the dipeptide structures. Solvation effects of aqueous environment are evident on the geometrical parameters related to the amide planes, dipole moments, HOMOLUMO energy gaps as well as thermodynamic stability of the dipeptides.