Cargando…
Genome-Wide Identification and Evolutionary and Expression Analyses of MYB-Related Genes in Land Plants
MYB proteins constitute one of the largest transcription factor families in plants. Recent evidence revealed that MYB-related genes play crucial roles in plants. However, compared with the R2R3-MYB type, little is known about the complex evolutionary history of MYB-related proteins in plants. Here,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789555/ https://www.ncbi.nlm.nih.gov/pubmed/23690543 http://dx.doi.org/10.1093/dnares/dst021 |
Sumario: | MYB proteins constitute one of the largest transcription factor families in plants. Recent evidence revealed that MYB-related genes play crucial roles in plants. However, compared with the R2R3-MYB type, little is known about the complex evolutionary history of MYB-related proteins in plants. Here, we present a genome-wide analysis of MYB-related proteins from 16 species of flowering plants, moss, Selaginella, and algae. We identified many MYB-related proteins in angiosperms, but few in algae. Phylogenetic analysis classified MYB-related proteins into five distinct subgroups, a result supported by highly conserved intron patterns, consensus motifs, and protein domain architecture. Phylogenetic and functional analyses revealed that the Circadian Clock Associated 1-like/R-R and Telomeric DNA-binding protein-like subgroups are >1 billion yrs old, whereas the I-box-binding factor-like and CAPRICE-like subgroups appear to be newly derived in angiosperms. We further demonstrated that the MYB-like domain has evolved under strong purifying selection, indicating the conservation of MYB-related proteins. Expression analysis revealed that the MYB-related gene family has a wide expression profile in maize and soybean development and plays important roles in development and stress responses. We hypothesize that MYB-related proteins initially diversified through three major expansions and domain shuffling, but remained relatively conserved throughout the subsequent plant evolution. |
---|