Cargando…
Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared
Surface-enhanced infrared absorption spectroscopy has attracted increased attention for direct access to molecular vibrational fingerprints in the mid-infrared. Perfect-absorber metamaterials (PAMs) with multi-band spectral responses and significant enhancement of the local near-field intensity were...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790207/ https://www.ncbi.nlm.nih.gov/pubmed/24091778 http://dx.doi.org/10.1038/srep02865 |
Sumario: | Surface-enhanced infrared absorption spectroscopy has attracted increased attention for direct access to molecular vibrational fingerprints in the mid-infrared. Perfect-absorber metamaterials (PAMs) with multi-band spectral responses and significant enhancement of the local near-field intensity were developed to improve the intrinsic absorption cross sections of absorption spectrum to identify the vibrational spectra of biomolecules. To verify its performance, the proposed infrared PAM array was used to identify the molecular stretches of a Parylene C film. The resonant responses of the infrared PAMs were accurately tuned to the vibrational modes of the C = C target bonds. The vibrational stretches of the C = C moiety were observed and the auto-fluorescence mechanisms of the Parylene C film were monitored. The unique properties of the PAMs indicate that this approach is a promising strategy for surface-enhanced molecular absorption spectroscopy (SEMS) in the mid-infrared region and for the tracking of characteristic molecular vibrational modes. |
---|