Cargando…
Molecular Dynamics Simulations of Double-Stranded DNA in an Explicit Solvent Model with the Zero-Dipole Summation Method
Molecular dynamics (MD) simulations of a double-stranded DNA with explicit water and small ions were performed with the zero-dipole summation (ZD) method, which was recently developed as one of the non-Ewald methods. Double-stranded DNA is highly charged and polar, with phosphate groups in its backb...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790736/ https://www.ncbi.nlm.nih.gov/pubmed/24124577 http://dx.doi.org/10.1371/journal.pone.0076606 |
Sumario: | Molecular dynamics (MD) simulations of a double-stranded DNA with explicit water and small ions were performed with the zero-dipole summation (ZD) method, which was recently developed as one of the non-Ewald methods. Double-stranded DNA is highly charged and polar, with phosphate groups in its backbone and their counterions, and thus precise treatment for the long-range electrostatic interactions is always required to maintain the stable and native double-stranded form. A simple truncation method deforms it profoundly. On the contrary, the ZD method, which considers the neutralities of charges and dipoles in a truncated subset, well reproduced the electrostatic energies of the DNA system calculated by the Ewald method. The MD simulations using the ZD method provided a stable DNA system, with similar structures and dynamic properties to those produced by the conventional Particle mesh Ewald method. |
---|