Cargando…
Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase
Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expre...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790822/ https://www.ncbi.nlm.nih.gov/pubmed/24124492 http://dx.doi.org/10.1371/journal.pone.0075459 |
_version_ | 1782286654932779008 |
---|---|
author | Lan, Xiaozhong Chang, Kai Zeng, Lingjiang Liu, Xiaoqiang Qiu, Fei Zheng, Weilie Quan, Hong Liao, Zhihua Chen, Min Huang, Wenlin Liu, Wanhong Wang, Qiang |
author_facet | Lan, Xiaozhong Chang, Kai Zeng, Lingjiang Liu, Xiaoqiang Qiu, Fei Zheng, Weilie Quan, Hong Liao, Zhihua Chen, Min Huang, Wenlin Liu, Wanhong Wang, Qiang |
author_sort | Lan, Xiaozhong |
collection | PubMed |
description | Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21–6.84, 1.50–2.19 and 1.27–3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside. |
format | Online Article Text |
id | pubmed-3790822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37908222013-10-11 Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase Lan, Xiaozhong Chang, Kai Zeng, Lingjiang Liu, Xiaoqiang Qiu, Fei Zheng, Weilie Quan, Hong Liao, Zhihua Chen, Min Huang, Wenlin Liu, Wanhong Wang, Qiang PLoS One Research Article Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21–6.84, 1.50–2.19 and 1.27–3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside. Public Library of Science 2013-10-04 /pmc/articles/PMC3790822/ /pubmed/24124492 http://dx.doi.org/10.1371/journal.pone.0075459 Text en © 2013 Lan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lan, Xiaozhong Chang, Kai Zeng, Lingjiang Liu, Xiaoqiang Qiu, Fei Zheng, Weilie Quan, Hong Liao, Zhihua Chen, Min Huang, Wenlin Liu, Wanhong Wang, Qiang Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title | Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title_full | Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title_fullStr | Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title_full_unstemmed | Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title_short | Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase |
title_sort | engineering salidroside biosynthetic pathway in hairy root cultures of rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790822/ https://www.ncbi.nlm.nih.gov/pubmed/24124492 http://dx.doi.org/10.1371/journal.pone.0075459 |
work_keys_str_mv | AT lanxiaozhong engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT changkai engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT zenglingjiang engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT liuxiaoqiang engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT qiufei engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT zhengweilie engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT quanhong engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT liaozhihua engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT chenmin engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT huangwenlin engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT liuwanhong engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase AT wangqiang engineeringsalidrosidebiosyntheticpathwayinhairyrootculturesofrhodiolacrenulatabasedonmetaboliccharacterizationoftyrosinedecarboxylase |