Cargando…
Spectral and Spatial-Based Classification for Broad-Scale Land Cover Mapping Based on Logistic Regression
Improvement of satellite sensor characteristics motivates the development of new techniques for satellite image classification. Spatial information seems to be critical in classification processes, especially for heterogeneous and complex landscapes such as those observed in the Mediterranean basin....
Autores principales: | Mallinis, Georgios, Koutsias, Nikos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791007/ https://www.ncbi.nlm.nih.gov/pubmed/27873976 http://dx.doi.org/10.3390/s8128067 |
Ejemplares similares
-
National-scale cropland mapping based on spectral-temporal features and outdated land cover information
por: Waldner, François, et al.
Publicado: (2017) -
Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery
por: Zhang, Pengbin, et al.
Publicado: (2018) -
A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile
por: Pezoa, Jorge E., et al.
Publicado: (2023) -
A Study of Logistic Regression for Fatigue Classification Based on Data of Tongue and Pulse
por: Shi, Yu Lin, et al.
Publicado: (2022) -
Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution
por: Zhang, Tianyuan, et al.
Publicado: (2023)