Cargando…
Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications
This paper proposes a new distributed Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using all sensor...
Autores principales: | Luo, Yingting, Zhu, Yunmin, Luo, Dandan, Zhou, Jie, Song, Enbin, Wang, Donghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791008/ https://www.ncbi.nlm.nih.gov/pubmed/27873977 http://dx.doi.org/10.3390/s8128086 |
Ejemplares similares
-
Globally Optimal Distributed Kalman Filtering for Multisensor Systems with Unknown Inputs
por: Ruan, Yali, et al.
Publicado: (2018) -
Track Fusion Fractional Kalman Filter for the Multisensor Descriptor Fractional Systems
por: Zhang, Bo, et al.
Publicado: (2022) -
Networked multisensor decision and estimation fusion: based on advanced mathematical methods
por: Zhu, Yunmin
Publicado: (2013) -
Optimally Distributed Kalman Filtering with Data-Driven Communication †
por: Dormann, Katharina, et al.
Publicado: (2018) -
Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter
por: Nez, Alexis, et al.
Publicado: (2018)