Cargando…
Stabilizing Effect of Various Polyols on the Native and the Denatured States of Glucoamylase
Different spectral probes were employed to study the stabilizing effect of various polyols, such as, ethylene glycol (EG), glycerol (GLY), glucose (GLC) and trehalose (TRE) on the native (N), the acid-denatured (AD) and the thermal-denatured (TD) states of Aspergillus niger glucoamylase (GA). Polyol...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791667/ https://www.ncbi.nlm.nih.gov/pubmed/24163624 http://dx.doi.org/10.1155/2013/570859 |
Sumario: | Different spectral probes were employed to study the stabilizing effect of various polyols, such as, ethylene glycol (EG), glycerol (GLY), glucose (GLC) and trehalose (TRE) on the native (N), the acid-denatured (AD) and the thermal-denatured (TD) states of Aspergillus niger glucoamylase (GA). Polyols induced both secondary and tertiary structural changes in the AD state of enzyme as reflected from altered circular dichroism (CD), tryptophan (Trp), and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence characteristics. Thermodynamic analysis of the thermal denaturation curve of native GA suggested significant increase in enzyme stability in the presence of GLC, TRE, and GLY (in decreasing order) while EG destabilized it. Furthermore, CD and fluorescence characteristics of the TD state at 71°C in the presence of polyols showed greater effectiveness of both GLC and TRE in inducing native-like secondary and tertiary structures compared to GLY and EG. |
---|