Cargando…
Semisupervised Kernel Marginal Fisher Analysis for Face Recognition
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper....
Autores principales: | Wang, Ziqiang, Sun, Xia, Sun, Lijun, Huang, Yuchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791838/ https://www.ncbi.nlm.nih.gov/pubmed/24163638 http://dx.doi.org/10.1155/2013/981840 |
Ejemplares similares
-
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
A Novel Active Semisupervised Convolutional Neural Network Algorithm for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2017) -
Kernel learning algorithms for face recognition
por: Li, Jun-Bao, et al.
Publicado: (2013) -
Semisupervised white matter hyperintensities segmentation on MRI
por: Huang, Fan, et al.
Publicado: (2022) -
Active Semisupervised Model for Improving the Identification
of Anticancer Peptides
por: Cai, Lijun, et al.
Publicado: (2021)