Cargando…

The Unique Maximal GF-Regular Submodule of a Module

An R-module A is called GF-regular if, for each a ∈ A and r ∈ R, there exist t ∈ R and a positive integer n such that r (n) tr (n) a = r (n) a. We proved that each unitary R-module A contains a unique maximal GF-regular submodule, which we denoted by M GF(A). Furthermore, the radical properties of A...

Descripción completa

Detalles Bibliográficos
Autores principales: Abduldaim, Areej M., Chen, Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791843/
https://www.ncbi.nlm.nih.gov/pubmed/24163628
http://dx.doi.org/10.1155/2013/750808
_version_ 1782286766307278848
author Abduldaim, Areej M.
Chen, Sheng
author_facet Abduldaim, Areej M.
Chen, Sheng
author_sort Abduldaim, Areej M.
collection PubMed
description An R-module A is called GF-regular if, for each a ∈ A and r ∈ R, there exist t ∈ R and a positive integer n such that r (n) tr (n) a = r (n) a. We proved that each unitary R-module A contains a unique maximal GF-regular submodule, which we denoted by M GF(A). Furthermore, the radical properties of A are investigated; we proved that if A is an R-module and K is a submodule of A, then M GF(K) = K∩M GF(A). Moreover, if A is projective, then M GF(A) is a G-pure submodule of A and M GF(A) = M(R) · A.
format Online
Article
Text
id pubmed-3791843
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-37918432013-10-27 The Unique Maximal GF-Regular Submodule of a Module Abduldaim, Areej M. Chen, Sheng ScientificWorldJournal Research Article An R-module A is called GF-regular if, for each a ∈ A and r ∈ R, there exist t ∈ R and a positive integer n such that r (n) tr (n) a = r (n) a. We proved that each unitary R-module A contains a unique maximal GF-regular submodule, which we denoted by M GF(A). Furthermore, the radical properties of A are investigated; we proved that if A is an R-module and K is a submodule of A, then M GF(K) = K∩M GF(A). Moreover, if A is projective, then M GF(A) is a G-pure submodule of A and M GF(A) = M(R) · A. Hindawi Publishing Corporation 2013-09-15 /pmc/articles/PMC3791843/ /pubmed/24163628 http://dx.doi.org/10.1155/2013/750808 Text en Copyright © 2013 A. M. Abduldaim and S. Chen. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Abduldaim, Areej M.
Chen, Sheng
The Unique Maximal GF-Regular Submodule of a Module
title The Unique Maximal GF-Regular Submodule of a Module
title_full The Unique Maximal GF-Regular Submodule of a Module
title_fullStr The Unique Maximal GF-Regular Submodule of a Module
title_full_unstemmed The Unique Maximal GF-Regular Submodule of a Module
title_short The Unique Maximal GF-Regular Submodule of a Module
title_sort unique maximal gf-regular submodule of a module
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791843/
https://www.ncbi.nlm.nih.gov/pubmed/24163628
http://dx.doi.org/10.1155/2013/750808
work_keys_str_mv AT abduldaimareejm theuniquemaximalgfregularsubmoduleofamodule
AT chensheng theuniquemaximalgfregularsubmoduleofamodule
AT abduldaimareejm uniquemaximalgfregularsubmoduleofamodule
AT chensheng uniquemaximalgfregularsubmoduleofamodule