Cargando…
A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks
MOTIVATION: Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological system. However, GRNs are dynamic in response to physiological...
Autores principales: | Xiong, Jie, Zhou, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792119/ https://www.ncbi.nlm.nih.gov/pubmed/24116005 http://dx.doi.org/10.1371/journal.pone.0074571 |
Ejemplares similares
-
Modeling time-varying brain networks with a self-tuning optimized Kalman filter
por: Pascucci, D., et al.
Publicado: (2020) -
Kalman Filtering for Genetic Regulatory Networks with Missing Values
por: Lin, Qiongbin, et al.
Publicado: (2017) -
Real-Time Identification of Time-Varying Cable Force Using an Improved Adaptive Extended Kalman Filter
por: Yang, Ning, et al.
Publicado: (2022) -
Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother
por: Khan, Jehandad, et al.
Publicado: (2014) -
A robust gene regulatory network inference method base on Kalman
filter and linear regression
por: Pirgazi, Jamshid, et al.
Publicado: (2018)