Cargando…

MiR-184 regulates insulin secretion through repression of Slc25a22

Insulin secretion from pancreatic β-cells plays an essential role in blood glucose homeostasis and type 2 diabetes. Many genes are involved in the secretion of insulin and most of these genes can be targeted by microRNAs (miRNAs). However, the role of miRNAs in insulin secretion and type 2 diabetes...

Descripción completa

Detalles Bibliográficos
Autores principales: Morita, Sumiyo, Horii, Takuro, Kimura, Mika, Hatada, Izuho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792180/
https://www.ncbi.nlm.nih.gov/pubmed/24109547
http://dx.doi.org/10.7717/peerj.162
Descripción
Sumario:Insulin secretion from pancreatic β-cells plays an essential role in blood glucose homeostasis and type 2 diabetes. Many genes are involved in the secretion of insulin and most of these genes can be targeted by microRNAs (miRNAs). However, the role of miRNAs in insulin secretion and type 2 diabetes has not been exhaustively studied. The expression miR-184, a miRNA enriched in pancreatic islets, negatively correlates with insulin secretion, suggesting that it is a good candidate for miRNA-mediated regulation of insulin secretion. Here we report that miR-184 inhibits insulin secretion in the MIN6 pancreatic β-cell line through the repression of its target Slc25a22, a mitochondrial glutamate carrier. Our study provides new insight into the regulation of insulin secretion by glutamate transport in mitochondria.