Cargando…
Chromatin-based epigenetics of adult subventricular zone neural stem cells
In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the su...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792351/ https://www.ncbi.nlm.nih.gov/pubmed/24115953 http://dx.doi.org/10.3389/fgene.2013.00194 |
_version_ | 1782286838547873792 |
---|---|
author | Gonzales-Roybal, Gabriel Lim, Daniel A. |
author_facet | Gonzales-Roybal, Gabriel Lim, Daniel A. |
author_sort | Gonzales-Roybal, Gabriel |
collection | PubMed |
description | In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a “youthful” ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain. |
format | Online Article Text |
id | pubmed-3792351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-37923512013-10-10 Chromatin-based epigenetics of adult subventricular zone neural stem cells Gonzales-Roybal, Gabriel Lim, Daniel A. Front Genet Genetics In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a “youthful” ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain. Frontiers Media S.A. 2013-10-08 /pmc/articles/PMC3792351/ /pubmed/24115953 http://dx.doi.org/10.3389/fgene.2013.00194 Text en Copyright © Gonzales-Roybal and Lim. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Gonzales-Roybal, Gabriel Lim, Daniel A. Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title | Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title_full | Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title_fullStr | Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title_full_unstemmed | Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title_short | Chromatin-based epigenetics of adult subventricular zone neural stem cells |
title_sort | chromatin-based epigenetics of adult subventricular zone neural stem cells |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792351/ https://www.ncbi.nlm.nih.gov/pubmed/24115953 http://dx.doi.org/10.3389/fgene.2013.00194 |
work_keys_str_mv | AT gonzalesroybalgabriel chromatinbasedepigeneticsofadultsubventricularzoneneuralstemcells AT limdaniela chromatinbasedepigeneticsofadultsubventricularzoneneuralstemcells |