Cargando…
Real-time classification and sensor fusion with a spiking deep belief network
Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback...
Autores principales: | O'Connor, Peter, Neil, Daniel, Liu, Shih-Chii, Delbruck, Tobi, Pfeiffer, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792559/ https://www.ncbi.nlm.nih.gov/pubmed/24115919 http://dx.doi.org/10.3389/fnins.2013.00178 |
Ejemplares similares
-
Feature Representations for Neuromorphic Audio Spike Streams
por: Anumula, Jithendar, et al.
Publicado: (2018) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
por: Stromatias, Evangelos, et al.
Publicado: (2015) -
Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor
por: Delbruck, Tobi, et al.
Publicado: (2013) -
Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor
por: Rueckauer, Bodo, et al.
Publicado: (2016)