Cargando…

The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds

Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a...

Descripción completa

Detalles Bibliográficos
Autores principales: Armitage, Anna R., Ho, Chuan-Kai, Quigg, Antonietta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792878/
https://www.ncbi.nlm.nih.gov/pubmed/24116133
http://dx.doi.org/10.1371/journal.pone.0076672
_version_ 1782286887479672832
author Armitage, Anna R.
Ho, Chuan-Kai
Quigg, Antonietta
author_facet Armitage, Anna R.
Ho, Chuan-Kai
Quigg, Antonietta
author_sort Armitage, Anna R.
collection PubMed
description Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a grazing event varied with habitat patch size. We focused on the short-term responses of multiple co-occurring emergent salt marsh arthropods with differing levels of mobility and dispersal potential. As part of a marsh restoration project, two types of emergent marsh structures were created: small circular mounds (0.5 m diameter) separated by several meters of aquatic habitat, and larger, elongated terraces (>50 m long). Study plots (0.25 m(2)) were established on both structures; in a subset of plots, we simulated a pulsed grazing disturbance event by clipping the aboveground tissue of emergent plants, primarily Spartina alterniflora. At the end of the two-month recovery period, Ischnodemus (Hemiptera: Blissidae) density was over 50% lower in disturbed treatments within both large (terrace) and small (mound) patches. Predatory spider treatment responses were similar to Ischnodemus responses, suggesting a trophic relationship between those two arthropod groups. Alternatively, spiders may have been directly affected by the loss of shelter in the disturbed plots. Prokelisia (Homoptera: Delphacidae), which are generally more mobile than Ischnodemus, were not affected by disturbance treatment or by patch size, suggesting the potential for rapid recolonization following disturbance. Larval stem borers decreased by an order of magnitude in disturbed plots, but only in the large patches. In general, the disturbance effects of vegetation removal on arthropod density and community composition were stronger than patch size effects, and there were few interactions between pulsed disturbance and patch size. Rather, emergent marsh arthropod responses to disturbance and habitat area treatments were linked to the dispersal potential and mobility of each individual taxon.
format Online
Article
Text
id pubmed-3792878
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37928782013-10-10 The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds Armitage, Anna R. Ho, Chuan-Kai Quigg, Antonietta PLoS One Research Article Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a grazing event varied with habitat patch size. We focused on the short-term responses of multiple co-occurring emergent salt marsh arthropods with differing levels of mobility and dispersal potential. As part of a marsh restoration project, two types of emergent marsh structures were created: small circular mounds (0.5 m diameter) separated by several meters of aquatic habitat, and larger, elongated terraces (>50 m long). Study plots (0.25 m(2)) were established on both structures; in a subset of plots, we simulated a pulsed grazing disturbance event by clipping the aboveground tissue of emergent plants, primarily Spartina alterniflora. At the end of the two-month recovery period, Ischnodemus (Hemiptera: Blissidae) density was over 50% lower in disturbed treatments within both large (terrace) and small (mound) patches. Predatory spider treatment responses were similar to Ischnodemus responses, suggesting a trophic relationship between those two arthropod groups. Alternatively, spiders may have been directly affected by the loss of shelter in the disturbed plots. Prokelisia (Homoptera: Delphacidae), which are generally more mobile than Ischnodemus, were not affected by disturbance treatment or by patch size, suggesting the potential for rapid recolonization following disturbance. Larval stem borers decreased by an order of magnitude in disturbed plots, but only in the large patches. In general, the disturbance effects of vegetation removal on arthropod density and community composition were stronger than patch size effects, and there were few interactions between pulsed disturbance and patch size. Rather, emergent marsh arthropod responses to disturbance and habitat area treatments were linked to the dispersal potential and mobility of each individual taxon. Public Library of Science 2013-10-08 /pmc/articles/PMC3792878/ /pubmed/24116133 http://dx.doi.org/10.1371/journal.pone.0076672 Text en © 2013 Armitage et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Armitage, Anna R.
Ho, Chuan-Kai
Quigg, Antonietta
The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title_full The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title_fullStr The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title_full_unstemmed The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title_short The Interactive Effects of Pulsed Grazing Disturbance and Patch Size Vary among Wetland Arthropod Guilds
title_sort interactive effects of pulsed grazing disturbance and patch size vary among wetland arthropod guilds
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792878/
https://www.ncbi.nlm.nih.gov/pubmed/24116133
http://dx.doi.org/10.1371/journal.pone.0076672
work_keys_str_mv AT armitageannar theinteractiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds
AT hochuankai theinteractiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds
AT quiggantonietta theinteractiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds
AT armitageannar interactiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds
AT hochuankai interactiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds
AT quiggantonietta interactiveeffectsofpulsedgrazingdisturbanceandpatchsizevaryamongwetlandarthropodguilds