Cargando…

Familial Aggregation of Metabolic Syndrome Indicators in Portuguese Families

Background and Aims. Family studies are well suited to investigate the genetic architecture underlying the metabolic syndrome (MetS). The purposes of this paper were (i) to estimate heritabilities for each of the MetS indicators, and (ii) to test the significance of familial intratrait and cross-tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, D. M., Katzmarzyk, P. T., Trégouet, D.-A., Gomes, T. N., Santos, F. K., Maia, J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793391/
https://www.ncbi.nlm.nih.gov/pubmed/24171163
http://dx.doi.org/10.1155/2013/314823
Descripción
Sumario:Background and Aims. Family studies are well suited to investigate the genetic architecture underlying the metabolic syndrome (MetS). The purposes of this paper were (i) to estimate heritabilities for each of the MetS indicators, and (ii) to test the significance of familial intratrait and cross-trait correlations in MetS markers. Methods and Results. This study included 1,363 individuals from 515 Portuguese families in which five MetS components, including waist circumference (WC), blood pressure (BP), HDL-cholesterol, triglycerides (TG), and glucose (GLU), were measured. Intratrait and cross-trait familial correlations of these five components were estimated using Generalized Estimating Equations. Each MetS component was significantly heritable (h (2) ranged from 0.12 to 0.60) and exhibited strong familial resemblance with correlations between biological relatives of similar magnitude to those observed between spouses. With respect to cross-trait correlations, familial resemblance was very weak except for the HDL-TG pair. Conclusions. The present findings confirm the idea of familial aggregation in MetS traits. Spousal correlations were, in general, of the same magnitude as the biological relatives' correlations suggesting that most of the phenotypic variance in MetS traits could be explained by shared environment.