Cargando…
Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra
BACKGROUND: Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythm...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793863/ https://www.ncbi.nlm.nih.gov/pubmed/24076244 http://dx.doi.org/10.1016/j.cub.2013.08.038 |
_version_ | 1782287133004791808 |
---|---|
author | Zhang, Lin Hastings, Michael H. Green, Edward W. Tauber, Eran Sladek, Martin Webster, Simon G. Kyriacou, Charalambos P. Wilcockson, David C. |
author_facet | Zhang, Lin Hastings, Michael H. Green, Edward W. Tauber, Eran Sladek, Martin Webster, Simon G. Kyriacou, Charalambos P. Wilcockson, David C. |
author_sort | Zhang, Lin |
collection | PubMed |
description | BACKGROUND: Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart. RESULTS: We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ∼12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. CONCLUSIONS: We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism. |
format | Online Article Text |
id | pubmed-3793863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-37938632013-10-10 Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra Zhang, Lin Hastings, Michael H. Green, Edward W. Tauber, Eran Sladek, Martin Webster, Simon G. Kyriacou, Charalambos P. Wilcockson, David C. Curr Biol Article BACKGROUND: Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart. RESULTS: We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ∼12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. CONCLUSIONS: We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism. Cell Press 2013-10-07 /pmc/articles/PMC3793863/ /pubmed/24076244 http://dx.doi.org/10.1016/j.cub.2013.08.038 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Zhang, Lin Hastings, Michael H. Green, Edward W. Tauber, Eran Sladek, Martin Webster, Simon G. Kyriacou, Charalambos P. Wilcockson, David C. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title | Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title_full | Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title_fullStr | Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title_full_unstemmed | Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title_short | Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra |
title_sort | dissociation of circadian and circatidal timekeeping in the marine crustacean eurydice pulchra |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793863/ https://www.ncbi.nlm.nih.gov/pubmed/24076244 http://dx.doi.org/10.1016/j.cub.2013.08.038 |
work_keys_str_mv | AT zhanglin dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT hastingsmichaelh dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT greenedwardw dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT taubereran dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT sladekmartin dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT webstersimong dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT kyriacoucharalambosp dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra AT wilcocksondavidc dissociationofcircadianandcircatidaltimekeepinginthemarinecrustaceaneurydicepulchra |