Cargando…

Odor Uniformity among Tomato Individuals in Response to Herbivore Depends on Insect Species

Plants produce specific volatile organic compound (VOC) blends in response to herbivory. Herbivore-induced blends may prime the plant for future attack or attract carnivorous insects; these responses have been considered adaptive for plants. If herbivores differentially modify the VOC emission among...

Descripción completa

Detalles Bibliográficos
Autores principales: Bautista-Lozada, Alicia, Espinosa-García, Francisco Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793962/
https://www.ncbi.nlm.nih.gov/pubmed/24130855
http://dx.doi.org/10.1371/journal.pone.0077199
Descripción
Sumario:Plants produce specific volatile organic compound (VOC) blends in response to herbivory. Herbivore-induced blends may prime the plant for future attack or attract carnivorous insects; these responses have been considered adaptive for plants. If herbivores differentially modify the VOC emission among individuals within a group of plants they feed upon, then plant responses to herbivores will not only produce specific blends but also variation in odor among individuals, i.e. individuals smell the same, then having a uniform odor. We investigated the VOC emission variation or uniformity among tomato individuals (Solanum lycopersicum L. cv. Castlemart) in response to moderate wounding by (1) nymphs of the psyllid Bactericera cockerelli (Sulc.) (TP); (2) Lepidoptera chewing-feeding larvae of Fall Armyworm (Spodoptera frugiperda Smith) (FAW) and (3) of Cabbage Looper (Trichoplusia ni Hübner) (CL), and (4) mechanical damage (MD). We used a ratio-based analysis to compare the fold-change in concentration from constitutive to induced VOC emission. We also used size and shape analysis to compare the emission of damaged and non-damaged individuals. Aside of finding herbivore-specific blends in line with other studies, we found patterns not described previously. We detected constitutive and induced odor variation among individuals attacked by the same herbivore, with the induced odor uniformity depending on the herbivore identity. We also showed that the fold-change of VOCs from constitutive to induced state differed among individuals independently of the uniformity of the blends before herbivore attack. We discuss our findings in the context of the ecological roles of VOCs in plant-plant and plant-carnivore insects’ interactions.