Cargando…

Experimental Diabetes Induces Structural, Inflammatory and Vascular Changes of Achilles Tendons

This study aims to demonstrate how the state of chronic hyperglycemia from experimental Diabetes Mellitus can influence the homeostatic imbalance of tendons and, consequently, lead to the characteristics of tendinopathy. Twenty animals were randomly divided into two experimental groups: control grou...

Descripción completa

Detalles Bibliográficos
Autores principales: de Oliveira, Rodrigo R., Martins, Conceição S., Rocha, Yuri R., Braga, Allysson B. R., Mattos, Rômulo M., Hecht, Fábio, Brito, Gerly A. C., Nasciutti, Luiz E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794027/
https://www.ncbi.nlm.nih.gov/pubmed/24130676
http://dx.doi.org/10.1371/journal.pone.0074942
Descripción
Sumario:This study aims to demonstrate how the state of chronic hyperglycemia from experimental Diabetes Mellitus can influence the homeostatic imbalance of tendons and, consequently, lead to the characteristics of tendinopathy. Twenty animals were randomly divided into two experimental groups: control group, consisting of healthy rats and diabetic group constituted by rats induced to Diabetes Mellitus I. After twenty-four days of the induction of Diabetes type I, the Achilles tendon were removed for morphological evaluation, cellularity, number and cross-sectional area of blood vessel, immunohistochemistry for Collagen type I, VEGF and NF-κB nuclear localization sequence (NLS) and nitrate and nitrite level. The Achilles tendon thickness (µm/100g) of diabetic animals was significantly increased and, similarly, an increase was observed in the density of fibrocytes and mast cells in the tendons of the diabetic group. The average number of blood vessels per field, in peritendinous tissue, was statistically higher in the diabetic group 3.39 (2.98) vessels/field when compared to the control group 0.89 (1.68) vessels/field p = 0.001 and in the intratendinous region, it was observed that blood vessels were extremely rare in the control group 0.035 (0.18) vessels/field and were often present in the tendons of the diabetic group 0.89 (0.99) vessels/field. The immunohistochemistry analysis identified higher density of type 1 collagen and increased expression of VEGF as well as increased immunostaining for NFκB p50 NLS in the nucleus in Achilles tendon of the diabetic group when compared to the control group. Higher levels of nitrite/nitrate were observed in the experimental group induced to diabetes. We conclude that experimental DM induces notable structural, inflammatory and vascular changes in the Achilles tendon which are compatible with the process of chronic tendinopathy.