Cargando…
In Vitro Reparative Dentin: a Biochemical and Morphological Study
In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphologic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PAGEPress Publications, Pavia, Italy
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794354/ https://www.ncbi.nlm.nih.gov/pubmed/24085272 http://dx.doi.org/10.4081/ejh.2013.e23 |
Sumario: | In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while transmission electron microscopy revealed a synthesis of extracellular matrix fibers during the differentiation process. Biochemical assays demonstrated that the differentiated phenotype expressed odontoblast markers, such as Dentin Matrix Protein 1 (DMP1) and Dentin Sialoprotein (DSP), as well as type I collagen. Quantitative data regarding the mRNA expression of DMP1, DSP and type I collagen were obtained by Real Time PCR. Immunofluorescence data demonstrated the various localizations of DSP and DMP1 during odontoblast differentiation. Based on our results, we obtained odontoblast-like cells which simulated the reparative dentin processes in order to better investigate the mechanism of odontoblast differentiation, and dentin extracellular matrix deposition and mineralization. |
---|