Cargando…

Evaluation of sweet potato for fuel bioethanol production: hydrolysis and fermentation

The enzymatic starch hydrolysis and bioethanol production from a variety of sweet potato developed for bioenergy purposes (K 9807.1) on the basis of its high starch yields, was studied. Drying at 55°C and 95°C of sweet potato neither affected the sugar content nor the starch enzymatic hydrolysis eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Lareo, Claudia, Ferrari, Mario Daniel, Guigou, Mairan, Fajardo, Lucía, Larnaudie, Valeria, Ramírez, María Belén, Martínez-Garreiro, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795201/
https://www.ncbi.nlm.nih.gov/pubmed/24130960
http://dx.doi.org/10.1186/2193-1801-2-493
Descripción
Sumario:The enzymatic starch hydrolysis and bioethanol production from a variety of sweet potato developed for bioenergy purposes (K 9807.1) on the basis of its high starch yields, was studied. Drying at 55°C and 95°C of sweet potato neither affected the sugar content nor the starch enzymatic hydrolysis efficiency. Simultaneous saccharification and ethanol fermentations for dry matter ratio of sweet potato to water from 1:8 to 1:2 (w/v) were studied. Fresh sweet potato and dried at 55°C (flour) were assayed. At ratios of 1:8, similar results for fresh sweet potato and flour in terms of ethanol concentration (38–45 g/L), fermentation time (16 h) and sugar conversion (~ 100%) were found. At higher dry matter content, faster full conversion were observed using flour. A higher ratio than that for fresh sweet potato (1:2.2) did not improve the final ethanol concentration (100 g/L) and yields. High ethanol yields were found for VHG (very high gravity) conditions. The sweet potato used is an attractive raw matter for fuel ethanol, since up to 4800 L ethanol per hectare can be obtained.