Cargando…
Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795244/ https://www.ncbi.nlm.nih.gov/pubmed/23970550 http://dx.doi.org/10.1074/jbc.M113.502039 |
_version_ | 1782287354924367872 |
---|---|
author | Chen, Chen Krishnan, Vengadesan Macon, Kevin Manne, Kartik Narayana, Sthanam V. L. Schneewind, Olaf |
author_facet | Chen, Chen Krishnan, Vengadesan Macon, Kevin Manne, Kartik Narayana, Sthanam V. L. Schneewind, Olaf |
author_sort | Chen, Chen |
collection | PubMed |
description | Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis. |
format | Online Article Text |
id | pubmed-3795244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-37952442013-10-11 Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus Chen, Chen Krishnan, Vengadesan Macon, Kevin Manne, Kartik Narayana, Sthanam V. L. Schneewind, Olaf J Biol Chem Microbiology Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis. American Society for Biochemistry and Molecular Biology 2013-10-11 2013-08-22 /pmc/articles/PMC3795244/ /pubmed/23970550 http://dx.doi.org/10.1074/jbc.M113.502039 Text en © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | Microbiology Chen, Chen Krishnan, Vengadesan Macon, Kevin Manne, Kartik Narayana, Sthanam V. L. Schneewind, Olaf Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title | Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title_full | Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title_fullStr | Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title_full_unstemmed | Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title_short | Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus |
title_sort | secreted proteases control autolysin-mediated biofilm growth of staphylococcus aureus |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795244/ https://www.ncbi.nlm.nih.gov/pubmed/23970550 http://dx.doi.org/10.1074/jbc.M113.502039 |
work_keys_str_mv | AT chenchen secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus AT krishnanvengadesan secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus AT maconkevin secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus AT mannekartik secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus AT narayanasthanamvl secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus AT schneewindolaf secretedproteasescontrolautolysinmediatedbiofilmgrowthofstaphylococcusaureus |