Cargando…
Dynamic Regulation of Ero1α and Peroxiredoxin 4 Localization in the Secretory Pathway
In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H(2)O(2) as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H(2)O(2) to oxidize PDI, thus favo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795256/ https://www.ncbi.nlm.nih.gov/pubmed/23979138 http://dx.doi.org/10.1074/jbc.M113.467845 |
Sumario: | In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H(2)O(2) as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H(2)O(2) to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis. |
---|