Cargando…

A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derive...

Descripción completa

Detalles Bibliográficos
Autores principales: Senay, Gabriel B., Budde, Michael, Verdin, James P., Melesse, Assefa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795485/
_version_ 1782287384810881024
author Senay, Gabriel B.
Budde, Michael
Verdin, James P.
Melesse, Assefa M.
author_facet Senay, Gabriel B.
Budde, Michael
Verdin, James P.
Melesse, Assefa M.
author_sort Senay, Gabriel B.
collection PubMed
description Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields.
format Online
Article
Text
id pubmed-3795485
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-37954852013-10-21 A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields Senay, Gabriel B. Budde, Michael Verdin, James P. Melesse, Assefa M. Sensors (Basel) Full Research Paper Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields. Molecular Diversity Preservation International (MDPI) 2007-06-15 /pmc/articles/PMC3795485/ Text en © 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
spellingShingle Full Research Paper
Senay, Gabriel B.
Budde, Michael
Verdin, James P.
Melesse, Assefa M.
A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title_full A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title_fullStr A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title_full_unstemmed A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title_short A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
title_sort coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795485/
work_keys_str_mv AT senaygabrielb acoupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT buddemichael acoupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT verdinjamesp acoupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT melesseassefam acoupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT senaygabrielb coupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT buddemichael coupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT verdinjamesp coupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields
AT melesseassefam coupledremotesensingandsimplifiedsurfaceenergybalanceapproachtoestimateactualevapotranspirationfromirrigatedfields