Cargando…

Structural studies of haemoglobin from pisces species shortfin mako shark (Isurus oxyrinchus) at 1.9 Å resolution

Haemoglobin (Hb) is a tetrameric iron-containing protein that carries oxygen from the lungs to tissues and carbon dioxide from tissues back to the lungs. Pisces are the advanced aquatic vertebrates capable of surviving at wide depth ranges. The shortfin mako shark (SMS) is the pelagic, largest, fast...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramesh, Pandian, Sundaresan, S. S., Sathya Moorthy, Pon., Balasubramanian, M., Ponnuswamy, M. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795541/
https://www.ncbi.nlm.nih.gov/pubmed/24121325
http://dx.doi.org/10.1107/S0909049513021572
Descripción
Sumario:Haemoglobin (Hb) is a tetrameric iron-containing protein that carries oxygen from the lungs to tissues and carbon dioxide from tissues back to the lungs. Pisces are the advanced aquatic vertebrates capable of surviving at wide depth ranges. The shortfin mako shark (SMS) is the pelagic, largest, fastest and most sophisticated species of the shark kingdom with well developed eyes. Mostly the pisces species are cold blooded in nature. Distinctly, the SMSs are warm-blooded animals with an advanced circulatory system. SMSs are capable of maintaining elevated muscle temperatures up to 33 K above the ambient water temperatures at a depth of 150–500 m. SMSs have a diverged air-breathing mechanism compared with other vertebrates. The haemoglobin molecule consists of four polypeptide chains, namely two α chains, each with 140 amino acids and two β chains each having 136 amino acids. The SMS Hb was found to crystallize in monoclinic space group P2(1) using the hanging-drop vapour-diffusion method at room temperature. The crystal packing parameters for the SMS Hb structure contain one whole biological molecule in the asymmetric unit with a solvent content of 47%. The SMS Hb quaternary structural features interface–interface interactions and heme binding sites are discussed with different state Hbs and the results reveal that SMS Hb adopts an unliganded deoxy T state conformation.