Cargando…

Five-Year Change in Intraocular Pressure Associated with Changes in Arterial Blood Pressure and Body Mass Index. The Beijing Eye Study

PURPOSE: To examine a potential association between longitudinal changes in intraocular pressure (IOP), arterial blood pressure and body mass index (BMI) in a population-based setting. METHODS: The longitudinal population-based Beijing Eye Study included 2355 subjects with an age of 45+ years who we...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ya Xing, Xu, Liang, Zhang, Xiao Hui, You, Qi Sheng, Zhao, Liang, Jonas, Jost B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795645/
https://www.ncbi.nlm.nih.gov/pubmed/24146967
http://dx.doi.org/10.1371/journal.pone.0077180
Descripción
Sumario:PURPOSE: To examine a potential association between longitudinal changes in intraocular pressure (IOP), arterial blood pressure and body mass index (BMI) in a population-based setting. METHODS: The longitudinal population-based Beijing Eye Study included 2355 subjects with an age of 45+ years who were examined in 2006 and in 2011. The participants underwent a detailed ophthalmic examination including tonometry and measurement of arterial blood pressure and BMI. RESULTS: Data on IOP, arterial blood pressure and BMI measured in 2006 and in 2011 were available for 2257 (95.8%) subjects with a mean age of 59.5±9.7 years. The mean change in IOP was −1.25±2.26 mm Hg, mean change in mean blood pressure −7.4±12.1 mmHg, and mean change in BMI was 0.01±2.04 kg/m(2). In multivariate analysis, the 5-year change in IOP was significantly associated with a higher change in mean blood pressure (P<0.001; standardized regression coefficient Beta:0.11; regression coefficient B:0.02; 95% confidence interval (CI):0.01,0.03) after adjusting for younger age (P<0.001;Beta:−0.18;B:−0.04;95% CI:−0.05,−0.03), shorter body stature (P = 0.002;Beta:−0.06;B:−0.06;95% CI:−0.03,−0.01), thicker central corneal thickness (P<0.001;Beta:0.19;B:0.02;95% CI:0.01,0.02), deeper anterior chamber depth (P = 0.01;Beta:0.05;B:0.33;95% CI:0.07,0.60), and lower intraocular pressure at baseline (P<0.001;Beta:−0.56;B:−0.42;95% CI:−0.45,−0.39). If the analysis included only longitudinal parameters, the change in IOP was significantly associated with a higher change in mean arterial blood pressure (P<0.001;Beta:0.10;B:0.02;95% CI:0.01,0.03) and a higher change in body mass index (P<0.04;Beta:0.04;B:0.04;95% CI:0.01,0.09). CONCLUSIONS: In the 5-year follow-up of our population-based sample, a change in IOP was associated with a corresponding change in arterial blood pressure and with a corresponding change in body mass index. These longitudinal data support the notion of a physiological relationship between arterial blood pressure, intraocular pressure and body mass index. These findings may be of interest for the discussion of the pathogenesis of glaucomatous optic neuropathy.