Cargando…
The Use of Quantile Regression to Forecast Higher Than Expected Respiratory Deaths in a Daily Time Series: A Study of New York City Data 1987-2000
Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. D...
Autores principales: | Soyiri, Ireneous N., Reidpath, Daniel D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795678/ https://www.ncbi.nlm.nih.gov/pubmed/24147122 http://dx.doi.org/10.1371/journal.pone.0078215 |
Ejemplares similares
-
Evolving forecasting classifications and applications in health forecasting
por: Soyiri, Ireneous N, et al.
Publicado: (2012) -
Humans as Animal Sentinels for Forecasting Asthma Events: Helping Health Services Become More Responsive
por: Soyiri, Ireneous N., et al.
Publicado: (2012) -
Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall
por: Candila, Vincenzo, et al.
Publicado: (2023) -
Semistructured black-box prediction: proposed approach for asthma admissions in London
por: Soyiri, Ireneous N, et al.
Publicado: (2012) -
Asthma Length of Stay in Hospitals in London 2001–2006: Demographic, Diagnostic and Temporal Factors
por: Soyiri, Ireneous N., et al.
Publicado: (2011)