Cargando…

Training Reveals the Sources of Stroop and Flanker Interference Effects

In the field of cognitive control, dimensional overlap and pathway automaticity are generally believed to be critical for the generation of congruency effects. However, their specific roles in the generation of congruency effects are unclear. In two experiments, with the 4∶2 mapping design, we inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Antao, Tang, Dandan, Chen, Xuefei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795719/
https://www.ncbi.nlm.nih.gov/pubmed/24146892
http://dx.doi.org/10.1371/journal.pone.0076580
Descripción
Sumario:In the field of cognitive control, dimensional overlap and pathway automaticity are generally believed to be critical for the generation of congruency effects. However, their specific roles in the generation of congruency effects are unclear. In two experiments, with the 4∶2 mapping design, we investigated this issue by examining the training-related effects on congruency effects (the Stroop interference effect and the Flanker interference effect in Experiments 1 and 2, respectively) normally expressed as incongruent minus congruent difference and on their subcomponents (the stimulus interference and response interference). Experiment 1 revealed that the stimulus interference in the Stroop task, wherein the task-relevant (printed color of word) and the task-irrelevant (semantics of word) dimensions of the stimuli were processed in different pathways, was present during early training but was virtually eliminated at the late stage of training. This indicates that the two dimensions overlap at the early stage but separate at the late stage. In contrast, Experiment 2 showed that the response interference in a variant of the Flanker task, wherein the task-relevant (central color word printed in black font) and the task-irrelevant (flanking color words printed in black font) dimensions of the stimuli were processed in the same pathway, was enhanced after training. This indicates that the enhanced automaticity of irrelevant-dimension processing induces stronger response competition, which therefore results in the larger response interference. Taken together, the present study demonstrates that (1) dimensional overlap is necessary for the generation of congruency effects, (2) pathway automaticity can affect the size of congruency effects, and (3) training enhances the degree of automatic processing in a given pathway.