Cargando…
Cross-sectional study: Does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects?
OBJECTIVES: To develop a classifier to predict the presence of visual field (VF) deterioration in glaucoma suspects based on optical coherence tomography (OCT) measurements using the machine learning method known as the ‘Random Forest’ algorithm. DESIGN: Case–control study. PARTICIPANTS: 293 eyes of...
Autores principales: | Sugimoto, Koichiro, Murata, Hiroshi, Hirasawa, Hiroyo, Aihara, Makoto, Mayama, Chihiro, Asaoka, Ryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796272/ https://www.ncbi.nlm.nih.gov/pubmed/24103806 http://dx.doi.org/10.1136/bmjopen-2013-003114 |
Ejemplares similares
-
Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier
por: Yoshida, Tatsuya, et al.
Publicado: (2014) -
Identifying Areas of the Visual Field Important for Quality of Life in Patients with Glaucoma
por: Murata, Hiroshi, et al.
Publicado: (2013) -
Correction: Identifying Areas of the Visual Field Important for Quality of Life in Patients with Glaucoma
por: Murata, Hiroshi, et al.
Publicado: (2015) -
Impact of better and worse eye damage on quality of life in advanced glaucoma
por: Okamoto, Mizu, et al.
Publicado: (2014) -
Detection of Progression of Glaucomatous Visual Field Damage Using the Point-Wise Method with the Binomial Test
por: Karakawa, Ayako, et al.
Publicado: (2013)