Cargando…

Broadband solar absorption enhancement via periodic nanostructuring of electrodes

Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a botto...

Descripción completa

Detalles Bibliográficos
Autores principales: Adachi, Michael M., Labelle, André J., Thon, Susanna M., Lan, Xinzheng, Hoogland, Sjoerd, Sargent, Edward H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796292/
https://www.ncbi.nlm.nih.gov/pubmed/24121519
http://dx.doi.org/10.1038/srep02928
_version_ 1782287455941033984
author Adachi, Michael M.
Labelle, André J.
Thon, Susanna M.
Lan, Xinzheng
Hoogland, Sjoerd
Sargent, Edward H.
author_facet Adachi, Michael M.
Labelle, André J.
Thon, Susanna M.
Lan, Xinzheng
Hoogland, Sjoerd
Sargent, Edward H.
author_sort Adachi, Michael M.
collection PubMed
description Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.
format Online
Article
Text
id pubmed-3796292
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37962922013-10-18 Broadband solar absorption enhancement via periodic nanostructuring of electrodes Adachi, Michael M. Labelle, André J. Thon, Susanna M. Lan, Xinzheng Hoogland, Sjoerd Sargent, Edward H. Sci Rep Article Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices. Nature Publishing Group 2013-10-14 /pmc/articles/PMC3796292/ /pubmed/24121519 http://dx.doi.org/10.1038/srep02928 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
spellingShingle Article
Adachi, Michael M.
Labelle, André J.
Thon, Susanna M.
Lan, Xinzheng
Hoogland, Sjoerd
Sargent, Edward H.
Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title_full Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title_fullStr Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title_full_unstemmed Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title_short Broadband solar absorption enhancement via periodic nanostructuring of electrodes
title_sort broadband solar absorption enhancement via periodic nanostructuring of electrodes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796292/
https://www.ncbi.nlm.nih.gov/pubmed/24121519
http://dx.doi.org/10.1038/srep02928
work_keys_str_mv AT adachimichaelm broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes
AT labelleandrej broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes
AT thonsusannam broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes
AT lanxinzheng broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes
AT hooglandsjoerd broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes
AT sargentedwardh broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes