Cargando…
Broadband solar absorption enhancement via periodic nanostructuring of electrodes
Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a botto...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796292/ https://www.ncbi.nlm.nih.gov/pubmed/24121519 http://dx.doi.org/10.1038/srep02928 |
_version_ | 1782287455941033984 |
---|---|
author | Adachi, Michael M. Labelle, André J. Thon, Susanna M. Lan, Xinzheng Hoogland, Sjoerd Sargent, Edward H. |
author_facet | Adachi, Michael M. Labelle, André J. Thon, Susanna M. Lan, Xinzheng Hoogland, Sjoerd Sargent, Edward H. |
author_sort | Adachi, Michael M. |
collection | PubMed |
description | Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices. |
format | Online Article Text |
id | pubmed-3796292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37962922013-10-18 Broadband solar absorption enhancement via periodic nanostructuring of electrodes Adachi, Michael M. Labelle, André J. Thon, Susanna M. Lan, Xinzheng Hoogland, Sjoerd Sargent, Edward H. Sci Rep Article Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices. Nature Publishing Group 2013-10-14 /pmc/articles/PMC3796292/ /pubmed/24121519 http://dx.doi.org/10.1038/srep02928 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Article Adachi, Michael M. Labelle, André J. Thon, Susanna M. Lan, Xinzheng Hoogland, Sjoerd Sargent, Edward H. Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title | Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title_full | Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title_fullStr | Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title_full_unstemmed | Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title_short | Broadband solar absorption enhancement via periodic nanostructuring of electrodes |
title_sort | broadband solar absorption enhancement via periodic nanostructuring of electrodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796292/ https://www.ncbi.nlm.nih.gov/pubmed/24121519 http://dx.doi.org/10.1038/srep02928 |
work_keys_str_mv | AT adachimichaelm broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes AT labelleandrej broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes AT thonsusannam broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes AT lanxinzheng broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes AT hooglandsjoerd broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes AT sargentedwardh broadbandsolarabsorptionenhancementviaperiodicnanostructuringofelectrodes |