Cargando…

Mesostructural Bi-Mo-O catalyst: correct structure leading to high performance

Structure-activity relationship has been one of the main topics of research on catalysts all the time. Component and structure are the two moieties governing the performance of solid materials as catalysts. Multicomponent bismuth molybdates are well known catalysts for propene oxidation but pure cry...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li, Peng, Bo, Peng, Luming, Guo, Xuefeng, Xie, Zaiku, Ding, Weiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796305/
https://www.ncbi.nlm.nih.gov/pubmed/24121515
http://dx.doi.org/10.1038/srep02881
Descripción
Sumario:Structure-activity relationship has been one of the main topics of research on catalysts all the time. Component and structure are the two moieties governing the performance of solid materials as catalysts. Multicomponent bismuth molybdates are well known catalysts for propene oxidation but pure crystalline phases of bismuth molybdate are inactive for the reaction. We have designed mesostructural Bi-Mo-O catalyst with pure bismuth molybdate nanocrystals attached to molybdenum oxide nanobelts and found it is a high performance catalyst for the reaction, though the two domains themselves are inactive. The strongly expitaxial interaction between the two domains causes the lattice shrinkage and distortion of the bismuth molybdate nanocrystals and extremely promotes their catalytic activity toward propene oxidation while keeping high selectivity at the same time. The results are instructive for design of nano oxide catalysts with mesostructures leading to high performance.