Cargando…

Evaluation of a new high-throughput method for identifying quorum quenching bacteria

Quorum sensing (QS) is a population-dependent mechanism for bacteria to synchronize social behaviors such as secretion of virulence factors. The enzymatic interruption of QS, termed quorum quenching (QQ), has been suggested as a promising alternative anti-virulence approach. In order to efficiently...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Kaihao, Zhang, Yunhui, Yu, Min, Shi, Xiaochong, Coenye, Tom, Bossier, Peter, Zhang, Xiao-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796309/
https://www.ncbi.nlm.nih.gov/pubmed/24121744
http://dx.doi.org/10.1038/srep02935
Descripción
Sumario:Quorum sensing (QS) is a population-dependent mechanism for bacteria to synchronize social behaviors such as secretion of virulence factors. The enzymatic interruption of QS, termed quorum quenching (QQ), has been suggested as a promising alternative anti-virulence approach. In order to efficiently identify QQ bacteria, we developed a simple, sensitive and high-throughput method based on the biosensor Agrobacterium tumefaciens A136. This method effectively eliminates false positives caused by inhibition of growth of biosensor A136 and alkaline hydrolysis of N-acylhomoserine lactones (AHLs), through normalization of β-galactosidase activities and addition of PIPES buffer, respectively. Our novel approach was successfully applied in identifying QQ bacteria among 366 strains and 25 QQ strains belonging to 14 species were obtained. Further experiments revealed that the QQ strains differed widely in terms of the type of QQ enzyme, substrate specificity and heat resistance. The QQ bacteria identified could possibly be used to control disease in aquaculture.